

PART A

Answer all questions

$(10 \times 2=20)$

1. What is a velocity dependent potential? Give an example.
2. Show that Newton's second law can be deduced from the Lagrange's equations.
3. The Lagrangian of a system is $L=1 / 2 \mathrm{mk}^{2} \theta^{2}+\operatorname{mgh} \cos \theta$. Using the Lagrange's equations find the equation of motion for the system.
4. Show that the kinetic energy T for a torque free motion of a rigid body is a constant of motion.
5. Using the definition of $\mathbf{L}=\mathrm{m}(\mathbf{r} \times \mathbf{v})$, show that $\mathbf{L}=\mathbf{I} \omega$
6. Show that $[\mathrm{u}, \mathrm{v}]=-[\mathrm{v}, \mathrm{u}]$
7. Show that the generating function $\mathrm{F}_{3}=\mathrm{pQ}$ generates an identity transformation with a negative sign.
8. What is Jacobi identity?
9. Define Hamilton's principal function S
10. Using the definitions of action and angle variable show that the change in ω during a complete period is unity.

PART B

Answer any four

$(4 \times 7.5=30)$
11. Explain the different constraints of motion with suitable examples.
12. Reverse the Legendre's tranformation to derive the properties of $\mathrm{L}(\mathrm{q}, \mathrm{q}, \mathrm{t})$ from $\mathrm{H}(\mathrm{p}, \mathrm{q}, \mathrm{t})$ treating the q_{i} as independent quantities and show that it leads to the Lagrange's equation of motion.
13. Given that the generating function for a harmonic oscillator is $F_{1}=(m / 2) \omega q^{2} \cot Q$. Show that the Hamiltonian of the oscillator transform to $K=\omega P$ and hence find $q(t)$.
14. For the Kepler's problem in action-angle variables assume the expression for the action integral as \mathbf{J}_{r} $=\left[2 \mathrm{mE}+2 \mathrm{mk} / \mathrm{r}-\left(\mathbf{J}_{\theta}+\mathbf{J}_{\varphi}\right)^{2} / 4 \pi^{2} \mathrm{r}^{2}\right]^{1 / 2}$.dr. Solve this integral to show that $\tau^{2} \propto \mathrm{a}^{3}$ where τ is the time period of any planet with semi-major axis ' a ' about the Sun.
15. Write the Lagrangian for the linear triatomic molecule and solve for the normal modes of vibrations.

PART C

Answer any four

$(4 \times 12.5=50)$
16 a. Solve the equation of the orbit : $\theta=\ell \int \mathrm{dr} / \mathrm{r}^{2}\left\{2 \mathrm{~m}\left(\mathrm{E}-\mathrm{V}(\mathrm{r})-\ell^{2} / 2 \mathrm{mr}^{2}\right\}^{1 / 2}+\theta^{\prime}\right.$ for an attractive central potential. Classify the orbits in terms of e and E.
b. A particle of mass m is constrained to move on the inner surface of a cone of semi-angle α under the action of gravity. Setup the Lagrangian and the equation of motion.
17 a.Obtain the expression for the Coriolis effect as $2 \mathrm{~m}\left(\boldsymbol{\omega} \times \mathbf{v}_{\mathbf{r}}\right)$ where v_{r} is the velocity in the rotational frame of reference. State its importance in the Earth related phenomenon.
b. Prove that the moment of inertia about a given axis is related to the moment of inertia about a parallel axis passing through the centre of mass.
18 a. Explain the theory of canonical tranformations.
b. Show that the following tranformations are canonical.
i) $\mathrm{Q}=\mathrm{p}+\mathrm{iaq}$ and $\mathrm{P}=(\mathrm{p}-\mathrm{iaq}) / 2 \mathrm{ia}$ ii) $2 \mathrm{P}=\mathrm{p}^{2}+\mathrm{q}^{2}$ and $\mathrm{Q}=\tan ^{-1} \mathrm{q} / \mathrm{p}$

19 a. Solve by the Hamilton Jacobi method the motion of a particle in one dimension whose Hamiltonian is given by $\mathrm{H}=\mathrm{p}^{2} / 2 \mathrm{~m}+\mathrm{V}(\mathrm{q})$.
b. Give an account of fundamental Poisson's brackets.
20. Write notes on any Two of the following
i) Euler's angles
ii) Application of the variational principle
iii) Solution to one dimensional harmonic oscillator by H-J method

